منابع مشابه
Composition Operators and Multiplication Operators on Orlicz Spaces
This article has no abstract.
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملNorms of Positive Operators on LP-Spaces
Let 0 < T: LP(Y, v) -+ Lq(X, ) be a positive linear operator and let HITIP ,q denote its operator norm. In this paper a method is given to compute 1Tllp, q exactly or to bound 11Tllp q from above. As an application the exact norm 11VIlp,q of the Volterra operator Vf(x) = fo f(t)dt is computed.
متن کاملLINEAR OPERATORS ON Lp FOR 0
If 0 < p < 1 we classify completely the linear operators T: Lp -X where X is a p-convex symmetric quasi-Banach function space. We also show that if T: LLo is a nonzero linear operator, then forp < q < 2 there is a subspace Z of Lp, isomorphic to Lq, such that the restriction of T to Z is an isomorphism. On the other hand, we show that if p < q < o, the Lorentz space L(p, q) is a quotient of Lp ...
متن کاملmultiplication operators on banach modules over spectrally separable algebras
let $pa$ be a commutative banach algebra and $ex$ be a left banach $pa$-module. we study the set $dec_{pa}(ex)$ of all elements in $pa$ which induce a decomposable multiplication operator on $ex$. in the case $ex=pa$, $dec_{pa}(pa)$ is the well-known apostol algebra of $pa$. we show that $dec_{pa}(ex)$ is intimately related with the largest spectrally separable subalgebra of $pa$ and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2019
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm170903-15-11